Add like
Add dislike
Add to saved papers

Ba adsorption on the stoichiometric and defective TiO(2) (110) surface from first-principles calculations.

A theoretical study on Ba adsorption on the rutile TiO(2) (110) surface has been carried out by means of plane-wave, plane augmented waves potential, density functional theory calculations. A model consisting on a (4 x 1) unit cell, which corresponds to coverage of 0.125 monolayer (ML), has been used and several potential adsorption sites on the stoichiometric surface have been tried. It has been found that the most stable site is with the Ba atom in a position where it is bound to two bridging oxygen atoms and an in-plane oxygen atom forming equivalent bonds (OB site). The adsorption energy is 0.71 eV referred to the formation of Ba bulk and is about 0.3 eV more stable than other adsorption sites. The Ba-surface interaction produces some surface relaxation in all cases. The OB site is stable at moderate temperatures; however, after extensive molecular dynamic calculations it is found that atoms diffuse on the surface by means of a jumping mechanism among several stable positions. The presence of bridging oxygen vacancies does not alter significantly this picture since the adsorption close to defects is not energetically favorable and the atoms tend to move away from vacancies. A strong covalent character has been found in the nature of the bonding, which contrasts with previous suggestions of the existence of Ba(2+) species on the surface. When the coverage is increased to 0.25 ML by adding a Ba atom to the supercell, there is a significant repulsion between Ba atoms that move away from each other to occupy OB sites. Thus, the adsorption energy values per atom diminish. For the stoichiometric surface two equivalent adsorption patterns are found, whereas only one is found for the defective surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app