Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Removal of analyte-irrelevant variations in near-infrared tissue spectra.

Applied Spectroscopy 2006 September
This paper describes mathematical techniques to correct for analyte-irrelevant optical variability in tissue spectra by combining multiple preprocessing techniques to address variability in spectral properties of tissue overlying and within the muscle. A mathematical preprocessing method called principal component analysis (PCA) loading correction is discussed for removal of inter-subject, analyte-irrelevant variations in muscle scattering from continuous-wave diffuse reflectance near-infrared (NIR) spectra. The correction is completed by orthogonalizing spectra to a set of loading vectors of the principal components obtained from principal component analysis of spectra with the same analyte value, across different subjects in the calibration set. Once the loading vectors are obtained, no knowledge of analyte values is required for future spectral correction. The method was tested on tissue-like, three-layer phantoms using partial least squares (PLS) regression to predict the absorber concentration in the phantom muscle layer from the NIR spectra. Two other mathematical methods, short-distance correction to remove spectral interference from skin and fat layers and standard normal variate scaling, were also applied and/or combined with the proposed method prior to the PLS analysis. Each of the preprocessing methods improved model prediction and/or reduced model complexity. The combination of the three preprocessing methods provided the most accurate prediction results. We also performed a preliminary validation on in vivo human tissue spectra.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app