JOURNAL ARTICLE

Wavelet adaptive backstepping control for a class of nonlinear systems

Chun-Fei Hsu, Chih-Min Lin, Tsu-Tian Lee
IEEE Transactions on Neural Networks 2006, 17 (5): 1175-83
17001979
This paper proposes a wavelet adaptive backstepping control (WABC) system for a class of second-order nonlinear systems. The WABC comprises a neural backstepping controller and a robust controller. The neural backstepping controller containing a wavelet neural network (WNN) identifier is the principal controller, and the robust controller is designed to achieve L2 tracking performance with desired attenuation level. Since the WNN uses wavelet functions, its learning capability is superior to the conventional neural network for system identification. Moreover, the adaptation laws of the control system are derived in the sense of Lyapunov function and Barbalat's lemma, thus the system can be guaranteed to be asymptotically stable. The proposed WABC is applied to two nonlinear systems, a chaotic system and a wing-rock motion system to illustrate its effectiveness. Simulation results verify that the proposed WABC can achieve favorable tracking performance by incorporating of WNN identification, adaptive backstepping control, and L2 robust control techniques.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17001979
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"