JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Systemic tumor necrosis factor-related apoptosis-inducing ligand delivery shows antiatherosclerotic activity in apolipoprotein E-null diabetic mice.

Circulation 2006 October 4
BACKGROUND: Although in vitro studies have suggested that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) might be involved in vascular biology, its potential role in the pathogenesis and/or treatment of atherosclerosis has not been investigated.

METHODS AND RESULTS: Both recombinant human TRAIL and an adeno-associated virus vector expressing human TRAIL were used to deliver TRAIL in apolipoprotein E (apoE)-null mice in which diabetes mellitus was induced by destruction of islet cells with streptozotocin. Diabetes in apoE-null mice was associated with a significant increase in atherosclerotic plaque area and complexity in the aorta as assessed by a marked increase in interstitial collagen, cellular proliferation, and macrophage infiltration and a focal loss of endothelial coverage. Repeated intraperitoneal injections of recombinant human TRAIL and a single intravenous injection of adeno-associated virus-human TRAIL significantly attenuated the development of atherosclerotic plaques in apoE-null animals. TRAIL also markedly affected the cellular composition of plaque lesions by inducing apoptosis of infiltrating macrophages and increasing the vascular smooth muscle cell content. Moreover, TRAIL promoted the in vitro migration of cultured human aortic vascular smooth muscle cells but not of monocytes or macrophages. Conversely, TRAIL selectively induced apoptosis of human cultured macrophages but not of vascular smooth muscle cells.

CONCLUSIONS: Overall, data from the present study indicate that atherosclerosis in diabetic apoE-null mice is ameliorated by systemic TRAIL administration and that adeno-associated virus-mediated TRAIL gene delivery might represent an innovative method for the therapy of diabetic vascular diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app