COMPARATIVE STUDY
JOURNAL ARTICLE

Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate

Joshua D Lambert, Shengmin Sang, Jungil Hong, Seok-Joo Kwon, Mao-Jung Lee, Chi-Tang Ho, Chung S Yang
Drug Metabolism and Disposition: the Biological Fate of Chemicals 2006, 34 (12): 2111-6
16997910
(-)-Epigallocatechin-3-gallate (EGCG) is the widely studied catechin in green tea (Camellia sinensis). Previously, we have reported the low bioavailability of EGCG in rats and mice. As a means of improving the bioavailability of EGCG, we have prepared a peracetylated EGCG derivative (AcEGCG) and herein report its growth inhibitory activity and cellular uptake in vitro, as well as bioavailability in mice. AcEGCG exhibited enhanced growth inhibitory activity relative to EGCG in both KYSE150 human esophageal (IC50 = 10 versus 20 microM) and HCT116 human colon cancer cells (IC50 = 32 versus 45 microM). AcEGCG was rapidly converted to EGCG by HCT116 cells, and treatment of cells with AcEGCG resulted in a 2.8- to 30-fold greater intracellular concentration of EGCG as compared with treatment with EGCG. AcEGCG was also more potent than EGCG at inhibiting nitric oxide production (4.4-fold) and arachidonic acid release (2.0-fold) from lipopolysaccharide-stimulated RAW264.7 murine macrophages. Intragastric administration of AcEGCG to CF-1 mice resulted in higher bioavailability compared with administration of equimolar doses of EGCG. The plasma area under the curve from 0 to infinity (AUC0-->infinity) of total EGCG was 465.0 and 194.6 [(microg/ml) . min] from the administration of AcEGCG and EGCG, respectively. The t1/2 of EGCG was also increased following administration of AcEGCG compared with EGCG (441.0 versus 200.3 min). The AUC0-->infinity and t1/2 were also increased in small intestinal (2.8- and 4.3-fold, respectively) and colonic tissues (2.4- and 6.0-fold, respectively). These data suggest that acetylation represents a means of increasing the biological potency in vitro, increasing the bioavailability of EGCG in vivo, and may improve cancer-preventive activity.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16997910
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"