Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia

Amy E Downey, Leonie M Chenoweth, Dana K Townsend, Jennifer D Ranum, Christine S Ferguson, Craig A Harms
Respiratory Physiology & Neurobiology 2007 May 14, 156 (2): 137-46
The purpose of this study was to determine the effects of inspiratory muscle training (IMT) on exercise in hypoxia (H) and normoxia (N). A 4-week IMT program was implemented with 12 healthy subjects using an inspiratory muscle trainer set at either 15% (C; n=5) or 50% (IMT; n=7) maximal inspiratory mouth pressure (PImax). Two treadmill tests (85% VO2max) to exhaustion and measures of diaphragm thickness (Tdi) and function were completed before and after training in H and N. Significant increases of 8-12% and 24.5+/-3.1% in Tdi and PImax, respectively, were seen in the IMT group. Time to exhaustion remained unchanged in all conditions. Inspiratory muscle fatigue (downward arrowPImax) following exercise was reduced approximately 10% (P<0.05) in IMT after both N and H. During H, IMT reduced (P<0.05) VO2 by 8-12%, cardiac output by 14+/-2%, ventilation by 25+/-3%; and increased arterial oxygen saturation by 4+/-1% and lung diffusing capacity by 22+/-3%. Ratings of perceived exertion and dyspnea were also significantly reduced. These data suggest that IMT significantly improves structural and functional physiologic measures in hypoxic exercise.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"