COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Designing dose-escalation trials with late-onset toxicities using the time-to-event continual reassessment method.

PURPOSE: The standard design for phase I trials of combined chemotherapy and radiation, which enters either three or six patients per dose level, has little statistical basis and is subject to opening and closing because of delayed toxicities that disrupt patient accrual. We compared the operating characteristics of this standard design and the time-to-event continual reassessment method (TITE-CRM) for dose-escalation trials of combination chemotherapy and radiation.

METHODS: The operating characteristics were determined by Monte Carlo simulation of 60,000 phase I trials.

RESULTS: Compared with the standard trial design, in studies with delayed toxicity (ie, where four or more patients are expected to enter onto the study during a single previously enrolled patient's observation for toxicity), TITE-CRM trials are significantly shorter when toxicity observation times are long, treat more patients at or above the maximum-tolerated dose, identify the maximum-tolerated dose (MTD) more accurately, and provide phase II information, but do not expose patients to significant additional risk. Estimation precision and overdose control of TITE-CRM increase as the design assumptions more closely resemble the true state of nature, but are reduced if, for instance, the toxicity of treatment has been grossly underestimated.

CONCLUSION: Compared with the standard design, if there is any prior knowledge concerning the toxicity profile of a treatment, TITE-CRM can leverage it to produce more accurate estimates of the MTD and does not expose patients to significant excess risk, but requires timely communication between clinical investigators, data managers, and study statisticians.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app