Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

(-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78.

Cancer Research 2006 September 16
Many beneficial properties have been attributed to (-)-epigallocatechin gallate (EGCG), including chemopreventive, anticarcinogenic, and antioxidant actions. In this study, we investigated the effects of EGCG on the function of glucose-regulated protein 78 (GRP78), which is associated with the multidrug resistance phenotype of many types of cancer cells. Our investigation was directed at elucidating the mechanism of the EGCG and GRP78 interaction and providing evidence about whether EGCG modulates the activity of anticancer drugs through the inhibition of GRP78 function. We found that EGCG directly interacted with GRP78 at the ATP-binding site of protein and regulated its function by competing with ATP binding, resulting in the inhibition of ATPase activity. EGCG binding caused the conversion of GRP78 from its active monomer to the inactive dimer and oligomer forms. Further, we showed that EGCG interfered with the formation of the antiapoptotic GRP78-caspase-7 complex, which resulted in an increased etoposide-induced apoptosis in cancer cells. We also showed that EGCG significantly suppressed the transformed phenotype of breast cancer cells treated with etoposide. Overall, these results strongly suggested that EGCG could prevent the antiapoptotic effect of GRP78, which usually suppresses the caspase-mediated cell death pathways in drug-treated cancer cells, contributing to the development of drug resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app