JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Extracellular adenosine triphosphate protects oxidative stress-induced increase of p21(WAF1/Cip1) and p27(Kip1) expression in primary cultured renal proximal tubule cells: role of PI3K and Akt signaling.

Oxidative stress, the result of cellular production of reactive oxygen species (ROS), has been implicated in causing many renal diseases. Adenosine triphosphate (ATP) is an important extracellular signal in the regulation of many intracellular processes in normal tubular cells as well as in the pathogenesis of cell injury. This study investigated the effect of ATP on H(2)O(2)-induced increase of cyclin kinase inhibitors (CKI) expression and its related signal molecules in primary cultured renal proximal tubule cells (PTCs). H(2)O(2) inhibited DNA synthesis in a concentration- (>50 microM) and time-dependent manner (>2 h), as determined by thymidine and BrdU incorporation, and by increase in the p21(WAF/Cip1) and p27(Kip1) expression levels. In contrast, ATP increased the level of thymidine, BrdU incorporation (>10(-5) M), and decreased the p21(WAF/Cip1) and p27(Kip1) expression levels, suggesting that ATP has a protective effect against H(2)O(2)-induced oxidative damage. Suramin, reactive blue 2 (RB-2), MRS 2159, and MRS 2179 did block the reversing effect of ATP. In addition, AMP-CPP or 2-methylthio-ATP blocked H(2)O(2)-induced inhibition of DNA synthesis, suggesting all these P2 purinoceptors may be potentially involved. ATP-induced stimulation of DNA synthesis was blocked by phosphatidylinositol 3-kinase (PI3K) and Akt inhibitors. These results suggest the involvement of P2 purinoceptors-mediated PI3K/Akt signal pathway in the protective effect of ATP against H(2)O(2)-induced oxidative damage. Indeed, pre-treatment with PI3K or Akt inhibitors did not protect H(2)O(2)-induced lipid peroxide (LPO) production and inhibition of thymidine incorporation. In conclusion, ATP, in part, blocked H(2)O(2)-induced increase of p21(WAF1/Cip1) and p27(Kip1) expression through PI3K and Akt signal pathway in renal PTCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app