Comparative Study
Evaluation Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of levosimendan versus dobutamine on pressure load-induced right ventricular failure.

OBJECTIVE: A transient increase in pulmonary arterial (PA) pressure can persistently depress right ventricular (RV) contractility. We investigated the effects of dobutamine and levosimendan on RV-PA coupling in this model of RV failure.

DESIGN: Prospective, controlled, randomized animal study.

SETTING: University research laboratory.

SUBJECTS: Fifteen anesthetized dogs.

INTERVENTIONS: Transient (90-min) PA constriction to induce persistent RV failure. Random assignment to dobutamine 5 and 10 microg/kg/min or levosimendan 12 microg/kg for 10 mins followed by 0.1 and 0.2 microg/kg/min.

MEASUREMENTS AND MAIN RESULTS: We measured PA distal resistance and proximal elastance by pressure-flow relationships and vascular impedance. We measured RV contractility by the end-systolic pressure-volume relationship (Ees), PA effective elastance by the end-diastolic to end-systolic relationship (Ea), and RV-PA coupling efficiency by the Ees/Ea ratio. PA constriction persistently increased PA resistance and elastance, increased Ea from 0.95 +/- 0.07 to 3.01 +/- 0.28 mm Hg/mL, decreased Ees from 1.17 +/- 0.09 to 0.58 +/- 0.07 mm Hg/mL, and decreased Ees/Ea from 1.26 +/- 0.09 to 0.22 +/- 0.03 (p < .05). Dobutamine did not affect pulmonary hemodynamics, markedly increased RV contractility, and improved RV-PA coupling. Levosimendan decreased PA resistance and elastance, increased RV contractility, and restored RV-PA coupling. Compared with dobutamine, levosimendan decreased RV afterload and therefore better restored RV-PA coupling at similar inotropic state.

CONCLUSIONS: A transient increase in PA pressure persistently worsens PA hemodynamics, RV contractility, RV-PA coupling, and cardiac output. Levosimendan restores RV-PA coupling better than dobutamine because of similar inotropic effects and additional pulmonary vasodilatory effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app