JOURNAL ARTICLE

Automated microaneurysm detection using local contrast normalization and local vessel detection

Alan D Fleming, Sam Philip, Keith A Goatman, John A Olson, Peter F Sharp
IEEE Transactions on Medical Imaging 2006, 25 (9): 1223-32
16967807
Screening programs using retinal photography for the detection of diabetic eye disease are being introduced in the UK and elsewhere. Automatic grading of the images is being considered by health boards so that the human grading task is reduced. Microaneurysms (MAs) are the earliest sign of this disease and so are very important for classifying whether images show signs of retinopathy. This paper describes automatic methods for MA detection and shows how image contrast normalization can improve the ability to distinguish between MAs and other dots that occur on the retina. Various methods for contrast normalization are compared. Best results were obtained with a method that uses the watershed transform to derive a region that contains no vessels or other lesions. Dots within vessels are handled successfully using a local vessel detection technique. Results are presented for detection of individual MAs and for detection of images containing MAs. Images containing MAs are detected with sensitivity 85.4% and specificity 83.1%.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16967807
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"