JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Acetaldehyde promotes rapamycin-dependent activation of p70(S6K) and glucose uptake despite inhibition of Akt and mTOR in dopaminergic SH-SY5Y human neuroblastoma cells.

Alcohol intake is one of the important lifestyle factors for the risk of insulin resistance and type 2 diabetes. Acetaldehyde, the major ethanol metabolite which is far more reactive than ethanol, has been postulated to participate in alcohol-induced tissue injury although its direct impact on insulin signaling is unclear. This study was designed to examine the effect of acetaldehyde on glucose uptake and insulin signaling in human dopaminergic SH-SY5Y cells. Akt, mammalian target of rapamycin (mTOR), ribosomal-S6 kinase (p70(S6K)), the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) and insulin receptor substrate (IRS)-2 were evaluated by Western blot analysis. Glucose uptake and apoptosis were measured using [(3)H]-2-deoxyglucose uptake and caspase-3 assay, respectively. Short-term exposure (12 h) of acetaldehyde (150 muM) facilitated glucose uptake in a rapamycin-dependent manner without affecting apoptosis, IRS-2 expression and insulin-stimulated glucose uptake in SH-SY5Y cells. Acetaldehyde suppressed basal and insulin-stimulated Akt phosphorylation without affecting total Akt expression. Acetaldehyde inhibited mTOR phosphorylation without affecting total mTOR and insulin-elicited response on mTOR phosphorylation. Rapamycin, which inhibits mTOR leading to inactivation of p70(S6K), did not affect acetaldehyde-induced inhibition on phosphorylation of Akt and mTOR. Interestingly, acetaldehyde enhanced p70(S6K) activation and depressed 4E-BP1 phosphorylation, the effect of which was blunted and exaggerated, respectively, by rapamycin. Collectively, these data suggested that acetaldehyde did not adversely affect glucose uptake despite inhibition of insulin signaling cascade at the levels of Akt and mTOR, possibly due to presence of certain mechanism(s) responsible for enhanced p70(S6K) phosphorylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app