JOURNAL ARTICLE

Smad4-dependent regulation of urokinase plasminogen activator secretion and RNA stability associated with invasiveness by autocrine and paracrine transforming growth factor-beta

Sheng-Ru Shiou, Pran K Datta, Punita Dhawan, Brian K Law, Jonathan M Yingling, Dan A Dixon, R Daniel Beauchamp
Journal of Biological Chemistry 2006 November 10, 281 (45): 33971-81
16959768
Metastasis is a primary cause of mortality due to cancer. Early metastatic growth involves both a remodeling of the extracellular matrix surrounding tumors and invasion of tumors across the basement membrane. Up-regulation of extracellular matrix degrading proteases such as urokinase plasminogen activator (uPA) and matrix metalloproteinases has been reported to facilitate tumor cell invasion. Autocrine transforming growth factor-beta (TGF-beta) signaling may play an important role in cancer cell invasion and metastasis; however, the underlying mechanisms remain unclear. In the present study, we report that autocrine TGF-beta supports cancer cell invasion by maintaining uPA levels through protein secretion. Interestingly, treatment of paracrine/exogenous TGF-beta at higher concentrations than autocrine TGF-beta further enhanced uPA expression and cell invasion. The enhanced uPA expression by exogenous TGF-beta is a result of increased uPA mRNA expression due to RNA stabilization. We observed that both autocrine and paracrine TGF-beta-mediated regulation of uPA levels was lost upon depletion of Smad4 protein by RNA interference. Thus, through the Smad pathway, autocrine TGF-beta maintains uPA expression through facilitated protein secretion, thereby supporting tumor cell invasiveness, whereas exogenous TGF-beta further enhances uPA expression through mRNA stabilization leading to even greater invasiveness of the cancer cells.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16959768
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"