JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dynamics of the horizontal vestibuloocular reflex after unilateral labyrinthectomy: response to high frequency, high acceleration, and high velocity rotations.

Loss of vestibular information from one labyrinth results in a marked asymmetry in the horizontal vestibuloocular reflex (VOR). The results of prior studies suggest that long-term deficits in VOR are more severe in response to rapid impulses than to sinusoidal head movements. The goal of the present study was to investigate the VOR following unilateral labyrinthectomy in response to different stimuli covering the full range of physiologically relevant head movements in macaque monkeys. The VOR was studied 1-39 days post-lesion using transient head perturbations (up to 12,000 degrees/s(2)), rapid rotations (up to 500 degrees/s), and sinusoidal rotations (up to 15 Hz). In response to rotations with high acceleration or velocity, both contra- and ipsilesional gains remained subnormal. VOR gains decreased as a function of increasing stimulus acceleration or velocity, reaching minimal values of 0.7-0.8 and 0.3-0.4 for contra and ipsilesional rotations, respectively. For sinusoidal rotations with low frequencies and velocities, responses to contralesional stimulation recovered within approximately 4 days. With increasing velocities and frequencies of rotation, however, the gains of contra- and ipsilesional responses remained subnormal. For each of the most challenging stimuli tested (i.e., 12,000 degrees/s(2 )transient head perturbations, 500 degrees/s fast whole-body rotations and 15 Hz stimulation) no significant compensation was observed in contra- or ipsilesional responses over time. Moreover, we found that gain of the cervico-ocular reflex (COR) remained negligible following unilateral loss indicating that neck reflexes did not contribute to the observed compensation. VOR responses elicited by both sinusoidal and transient rotations following unilateral labyrinthectomy could be described by the same mathematical model. We conclude that the compensated VOR has comparable response dynamics for impulses and sinusoidal head movements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app