Add like
Add dislike
Add to saved papers

Molecular mechanism of adaphostin-mediated G1 arrest in prostate cancer (PC-3) cells: signaling events mediated by hepatocyte growth factor receptor, c-Met, and p38 MAPK pathways.

Adaphostin (NSC680410), a small molecule congener of tyrphostin AG957, has been demonstrated previously to have significant anti-proliferative effects in several leukemia models. However, this effect of adaphostin in adherent cells/solid tumor models has not been examined. In this study, we investigated the anti-proliferative effects of adaphostin in the human prostate cancer cell line PC-3. Specifically, we explored the potential molecular mechanism(s) by which adaphostin elicits its anti-proliferative effect(s). We demonstrate that adaphostin inhibits the proliferation of PC-3 cells by inducing a G(1) phase cell cycle arrest. This adaphostin-induced G(1) arrest was associated with an increase in the expression of p21 and p27 and a decrease in the expression of G(1)-specific cyclins (cyclin A, D1, and D3) and cyclin-dependent kinases 4 and 6. Consequently, a dramatic decrease in the phosphorylation of retinoblastoma protein was also observed. Additionally, we found that adaphostin treatment induced a decrease in the phosphorylation of nucleophosmin, a major nuclear phosphoprotein, and that this decreased phosphorylation was a result of the p21- and p27-mediated inactivation of cyclin E-cyclin-dependent kinase 2 complex kinase activity. Furthermore, we have determined that the adaphostin-mediated cell cycle arrest of PC-3 cells is dependent upon activation of the p38 MAPK. We also demonstrate that the hepatocyte growth factor receptor-c-Met is involved in the adaphostin-mediated signaling events that regulate p38 MAPK. Taken together, these results identify for the first time a signaling cascade of adaphostin-mediated G(1) phase-specific cell cycle arrest in PC-3 cells. These findings suggest that the tyrphostin member has a broader spectrum of activity than originally predicted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app