JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of ciclamilast, a new PDE 4 PDE4 inhibitor, on airway hyperresponsiveness, PDE4D expression and airway inflammation in a murine model of asthma.

PDE4 (phosphodiesterase-4) plays a critical role in pathogenesis of allergic asthma and chronic obstructive pulmonary disease (COPD). PDE4 inhibitors are presently under clinical development for the treatment of asthma and/or COPD. Ciclamilast, a new PDE4 inhibitor, is a piclamilast (RP 73401) structural analogue, but has a more potent inhibitory effect on PDE4 and inflammation in the airway tissues and less side effects than that of piclamilast. In this study, we elucidate primarily on the roles of compound on PDE4 enzyme in physiological and pathological processes in a mouse model of asthma. The sensitized/challenged mice were reexposed to ovalbumin and airway response to inhaled methacholine was monitored. Orally administration of ciclamilast, in a dose-dependent manner, significantly inhibited changes in lung resistance and lung dynamic compliance, as well as upregulation of cAMP-PDE activity, increase of PDE4D mRNA expression, but not PDE4B from lung tissue in the murine model. In addition, the compound dose-dependently reduced mRNA expression of eotaxin, tumor necrosis factor (TNF)-alpha and interleukin (IL)-4, but slightly increased mRNA expression of interferon (IFN)-gamma from lung tissue. Further, levels of eotaxin, TNF-alpha and IL-4, and eosinophil and neutrophil accumulation in bronchoalveolar lavage fluid were also significantly reduced. Pathological examination, goblet cell hyperplasia and inflammatory cells infiltration in lung tissue were suppressed by treatment with ciclamilast. A significant correlation was observed between the increases in PDE4D mRNA expression and airway hyperresponsiveness. These studies confirm that inhibitory effect of ciclamilast on airway hyperresponsiveness includes its inhibiting PDE4D mRNA expression, down-modulating PDE4 activity, anti-inflammation and anti-mucus hypersecretion, and ciclamilast may have therapeutic potential for the treatment of asthma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app