Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Gene expression profiling in the neuroendocrine brain of male goldfish (Carassius auratus) exposed to 17alpha-ethinylestradiol.

Physiological Genomics 2006 November 28
17-alpha ethinylestradiol (EE2), a pharmaceutical estrogen, is detectable in water systems worldwide. Although studies report on the effects of xenoestrogens in tissues such as liver and gonad, few studies to date have investigated the effects of EE2 in the vertebrate brain at a large scale. The purpose of this study was to develop a goldfish brain-enriched cDNA array and use this in conjunction with a mixed tissue carp microarray to study the genomic response to EE2 in the brain. Gonad-intact male goldfish were exposed to nominal concentrations of 0.1 nM (29.6 ng/l) and 1.0 nM (296 ng/l) EE2 for 15 days. Male goldfish treated with the higher dose of EE2 had significantly smaller gonads compared with controls. Males also had a significantly reduced level of circulating testosterone (T) and 17beta-estradiol (E2) in both treatment groups. Candidate genes identified by microarray analysis fall into functional categories that include neuropeptides, cell metabolism, and transcription/translation factors. Differentially expressed genes verified by real-time RT-PCR included brain aromatase, secretogranin-III, and interferon-related developmental regulator 1. Our results suggest that the expression of genes in the sexually mature adult brain appears to be resistant to low EE2 exposure but is affected significantly at higher doses of EE2. This study demonstrates that microarray technology is a useful tool to study the effects of endocrine disrupting chemicals on neuroendocrine function and suggest that exposure to EE2 may have significant effects on localized E2 synthesis in the brain by affecting transcription of brain aromatase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app