JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Simultaneous downregulation of CDK inhibitors p18(Ink4c) and p27(Kip1) is required for MEN2A-RET-mediated mitogenesis.

Oncogene 2007 January 26
Multiple endocrine neoplasia type 2A (MEN2A) is predisposed by mutations in the RET proto-oncogene. Low expression of the cyclin-dependent kinase inhibitor (CDKI) p27(Kip1) is present in thyroid tumors, and recent evidence demonstrates p27 downregulation by the active RET mutant, RET/PTC1, found in papillary thyroid carcinoma. This implicates decreased p27 activity as an important event during thyroid tumorigenesis. However, p27(-/-) mice develop MEN-like tumors only in combination with loss of another CDKI, p18(Ink4c). This suggests that p18 and p27 functionally collaborate in suppression of tumorigenesis, that loss of both is critical in the development of MEN tumors and that both p18 and p27 are regulated by RET. We report that induction of the constitutively active MEN2A-specific RET mutant, RET2A(C634R), correlates with reduced p18/p27, and elevated cyclin D protein levels, leading to increased CDK activity, increased pRb phosphorylation and proliferation under growth arrest conditions. Mechanistically, RET2A represses p18/p27 mRNA levels while elevating cyclin D1 mRNA levels. RET2A expression also correlates with decreased p27 protein stability. RET2A-mediated regulation of p18 and p27, but not of cyclins D1 and D2, requires functional mitogen-activated protein kinase signaling. Additionally, RET2A-dependent p18 repression is required and sufficient to increase cell proliferation. Perhaps most significantly, MEN2A adrenal tumors also display these changes in cell cycle expression profile, demonstrating the biological relevance of our cell culture studies. Our results demonstrate for the first time that RET2A regulates p18, and suggest that loss of not only p27 but also of p18 expression is a key step in MEN tumorigenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app