JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Blockade of AKT activation in prostate cancer cells with a small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP).

AKT inhibitors are potentially promising drug candidates for the treatment of cancer. The inhibitory effects of a potent and selective AKT/BKB small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP), on the activation of AKT, its antiproliferation and apoptosis-inducing effects in prostate cancer cell lines: DU-145, PC-3, LNCaP, and CL-1, an androgen-independent LNCaP variant, and CL-1 xenograft mouse model were assessed by Western blot analysis, kinase assay, cell survival assay, and apoptosis assay in this report. It has been observed that the expression levels of AKT1, AKT2, and AKT3 vary, but the levels of phospho-Ser473 AKT and phospho-Thr308 AKT are quite unique in these cancer cell lines, and that CL-1 cells have the highest basal levels of AKT activation among these cell lines. In PC-3 cells, CMEP has been found to inhibit only AKT activation at both normal and serum-starvation conditions, not to inhibit PI3K, PDK1, or MAPK. More importantly, it has been discovered that CMEP inhibits cell proliferation, and induces apoptosis in prostate cancer cells which have high-levels of AKT activation and lack PTEN or harbor PTEN mutation, such as CL-1, LNCaP, and PC-3; only shows a minimal activity in DU-145 cancer cells which do not have AKT activation. Furthermore, it has been demonstrated that CMEP treatment inhibits phospho-Ser473 AKT and phospho-p70S6K while stimulating TSC2 in the tumor tissue from CL-1-bearing mice. In conclusion, by specific blockade of the activation of AKT, CMEP preferentially inhibits growth and induces apoptosis in prostate cancer cells which have high-levels of AKT activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app