Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion.

The cytoplasmic male sterile II (CMSII) mutant lacking complex I of the mitochondrial electron transport chain has a lower photosynthetic activity but exhibits higher rates of excess electron transport than the wild type (WT) when grown at high light intensity. In order to examine the cause of the lower photosynthetic activity and to determine whether excess electrons are consumed by photorespiration, light, and intercellular CO(2), molar fraction (c(i)) response curves of carbon assimilation were measured at varying oxygen molar fractions. While oxygen is the major acceptor for excess electrons in CMSII and WT leaves, electron flux to photorespiration is favoured in the mutant as compared with the WT leaves. Isotopic mass spectrometry measurements showed that leaf internal conductance to CO(2) diffusion (g(m)) in mutant leaves was half that of WT leaves, thus decreasing the c(c) and favouring photorespiration in the mutant. The specificity factor of Rubisco did not differ significantly between both types of leaves. Furthermore, carbon assimilation as a function of electrons used for carboxylation processes/electrons used for oxygenation processes (J(C)/J(O)) and as a function of the calculated chloroplastic CO(2) molar fraction (c(c)) values was similar in WT and mutant leaves. Enhanced rates of photorespiration also explain the consumption of excess electrons in CMSII plants and agreed with potential ATP consumption. Furthermore, the lower initial Rubisco activity in CMSII as compared with WT leaves resulted from the lower c(c) in ambient air, since initial Rubisco activity on the basis of equal c(c) values was similar in WT and mutant leaves. The retarded growth and the lower photosynthetic activity of the mutant were largely overcome when plants were grown in high CO(2) concentrations, showing that limiting CO(2) supply for photosynthesis was a major cause of the lower growth rate and photosynthetic activity in CMSII.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app