JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Altered central micro-opioid receptor binding after psychological trauma.

BACKGROUND: Functional neuroimaging studies have detected abnormal limbic and paralimbic activation to emotional probes in posttraumatic stress disorder (PTSD), but few studies have examined neurochemical mechanisms that underlie functional alterations in regional cerebral blood flow. The mu-opioid neurotransmitter system, implicated in responses to stress and suppression of pain, is distributed in and is thought to regulate the function of brain regions that are implicated in affective processing.

METHODS: Here we examined the micro-opioid system with positron emission tomography and the micro-opioid receptor-selective radiotracer [11C] carfentanil in 16 male patients with PTSD and two non-PTSD male control groups, with (n = 14) and without combat exposure (n = 15). Differences in micro-opioid receptor binding potential (BP2) were detected within discrete limbic and paralimbic regions.

RESULTS: Relative to healthy controls, both trauma-exposed groups had lower micro-opioid receptor BP2 in extended amygdala, nucleus accumbens, and dorsal frontal and insular cortex but had higher BP2 in the orbitofrontal cortex. PTSD patients exhibited reduced BP2 in anterior cingulate cortex compared with both control groups. Micro-opioid receptor BP2 in combat-exposed subjects without PTSD was lower in the amygdala but higher in the orbitofrontal cortex compared with both PTSD patients and healthy controls.

CONCLUSIONS: These findings differentiate the general response of the micro-opioid system to trauma from more specific changes associated with PTSD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app