Add like
Add dislike
Add to saved papers

Predicting transcription factor binding sites using local over-representation and comparative genomics.

BACKGROUND: Identifying cis-regulatory elements is crucial to understanding gene expression, which highlights the importance of the computational detection of overrepresented transcription factor binding sites (TFBSs) in coexpressed or coregulated genes. However, this is a challenging problem, especially when considering higher eukaryotic organisms.

RESULTS: We have developed a method, named TFM-Explorer, that searches for locally overrepresented TFBSs in a set of coregulated genes, which are modeled by profiles provided by a database of position weight matrices. The novelty of the method is that it takes advantage of spatial conservation in the sequence and supports multiple species. The efficiency of the underlying algorithm and its robustness to noise allow weak regulatory signals to be detected in large heterogeneous data sets.

CONCLUSION: TFM-Explorer provides an efficient way to predict TFBS overrepresentation in related sequences. Promising results were obtained in a variety of examples in human, mouse, and rat genomes. The software is publicly available at https://bioinfo.lifl.fr/TFM-Explorer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app