MENU ▼
Read by QxMD icon Read
search
OPEN IN READ APP
JOURNAL ARTICLE

Intramolecular and intermolecular energy transfers in donor-acceptor linear porphyrin arrays

Hanju Rhee, Taiha Joo, Naoki Aratani, Atsuhiro Osuka, Sung Cho, Dongho Kim
Journal of Chemical Physics 2006 August 21, 125 (7): 074902
16942375
We present highly time-resolved spontaneous fluorescence spectra of a porphyrin array system that consists of an energy donor and an acceptor linked by a phenyl group. The donors are meso-meso directly linked zinc(II) porphyrin arrays and the acceptor is a zinc(II) 5,15-di(phenylethynyl)porphyrin. The spectra over the entire Q (S1) emission band following the excitation of the donor B (S2) state have been measured directly without the conventional spectral reconstruction method. The time-resolved fluorescence spectra revealed detailed energy relaxation processes within the donor and subsequent energy transfer to the acceptor. The observed energy transfer rates to the acceptor are consistent with the Forster energy transfer rates calculated on the assumption that the energy is localized in the Q state of each porphyrin unit of the donor prior to the energy transfer. The passage of the energy deposited initially on one porphyrin unit of the donor to the acceptor illustrates a sequence of energy delocalization and localization processes before it finally reaches the acceptor.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
16942375
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"