JOURNAL ARTICLE

A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution

Roberto Improta, Vincenzo Barone, Giovanni Scalmani, Michael J Frisch
Journal of Chemical Physics 2006 August 7, 125 (5): 054103
16942199
An effective state specific (SS) model for the inclusion of solvent effects in time dependent density functional theory (TD-DFT) computations of excited electronic states has been developed and coded in the framework of the so-called polarizable continuum model (PCM). Different relaxation time regimes can be treated thus giving access to a number of different spectroscopic properties together with solvent relaxation energies of paramount relevance in electron transfer processes. SS and conventional linear response (LR) models have been compared for two benchmark systems (coumarin 153 and formaldehyde in different solvents) and in the limiting simple case of a dipolar solute embedded in a spherical cavity. The results point out the complementarity of LR and SS approaches and the advantages of the latter model especially for polar solvents. The favorable scaling properties of PCM-TD-DFT models in both SS and LR variants and their availability in effective quantum mechanical codes pave the route for the computation of reliable spectroscopic properties of large molecules of technological and/or biological interest in their natural environments.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16942199
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"