Add like
Add dislike
Add to saved papers

Theoretical study of photodissociation dynamics on the lowest-lying Rydberg state of ketene.

In the present study, an attempt is made to reveal the main mechanism of photodissociation on the lowest-lying Rydberg state (1)B(1) of ketene, referred to as the second singlet excited state S(2), by means of the complete active space self-consistent field and the second-order multiconfigurational perturbation theory methods. The located S(2)S(1)T(1) three-surface intersection plays an important role in the dissociation process. It is shown that the intersection permits an efficient internal conversion from S(2) to S(1) state, but prohibits the intersystem crossing from S(2) to T(1) state because of the small spin-orbital coupling value of 0.136 cm(-1). The main photodissociation process could be described as follows: after one photon absorption to the S(2) state, ketene preferentially relaxes to the minimum S(2)C(2v), and undergoes a transition state S(2)TS with small potential barrier along the C(s)-I (out-of-plane bent) symmetry, and passes through the S(2)S(1)T(1) intersection to reach S(1) surface, then arrives at the transition state S(1)TS along the minimum energy path. As is well known, S(1)-->S(0) internal conversion around the Franck-Condon region is expected to be very efficient, and eventually the hot S(0) molecule has accumulated enough energy to yield the CH(2) (a (1)A(1)) and CO (X (1)Sigma(+)) products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app