JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance.

Diabetes 2006 September
Transcription factor 7-like 2 (TCF7L2) regulates genes involved in cell proliferation and differentiation. The TCF7L2 gene is located on chromosome 10q25 in a region of replicated linkage to type 2 diabetes. Recently, a microsatellite marker in intron 3 (DG10S478) and five correlated single nucleotide polymorphisms (SNPs) were identified in Icelandic individuals that showed strong association with type 2 diabetes, which was replicated in Danish and European-American cohorts. We genotyped four of the SNPs (rs7901695, rs7903146, rs11196205, and rs12255372) in Amish subjects with type 2 diabetes (n = 137), impaired glucose tolerance (IGT; n = 139), and normal glucose tolerance (NGT; n = 342). We compared genotype frequencies in subjects with type 2 diabetes with those with NGT and found marginal association for rs7901695 (P = 0.05; odds ratio [OR] 1.51); comparison between NGT control subjects and the combined type 2 diabetes/IGT case group showed strong association with rs7901695 and rs7903146 (P = 0.008-0.01; OR 1.53-1.57) and marginal association with rs11196205 and rs12255372 (P = 0.07 and P = 0.04, respectively). In an expanded set of 698 Amish subjects without diabetes, we found no association with insulin and glucose levels during a 3-h oral glucose tolerance test. We also genotyped these SNPs in nondiabetic, non-Amish subjects (n = 48), in whom intravenous glucose tolerance tests were performed, and found an association between rs7901695 and rs7903146 and insulin sensitivity (P = 0.003 and P = 0.005, respectively) and disposition index (P = 0.04 and P = 0.007, respectively). These data provide replicating evidence that variants in TCF7L2 increase the risk for type 2 diabetes and novel evidence that the variants likely influence both insulin secretion and insulin sensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app