Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE

Joel A Black, Shujun Liu, Bryan C Hains, Carl Y Saab, Stephen G Waxman
Brain 2006, 129 (Pt 12): 3196-208
Axonal degeneration is a major contributor to non-remitting deficits in multiple sclerosis, and there is thus considerable current interest in the development of strategies that might prevent axonal loss in neuroinflammatory disease. Dysregulation of sodium ion homeostasis has been implicated in mechanisms leading to axonal degeneration, and several studies have shown that blockade of sodium channels can ameliorate axon damage following anoxic, traumatic and nitric oxide-induced CNS injury. Two sodium channel blockers, phenytoin and flecainide, have been reported to protect axons in experimental autoimmune encephalomyelitis (EAE) for 30 days, but long-term protective effects have not been studied. We demonstrate here that oral administration of phenytoin provides long-term (up to 180 days) protection for spinal cord corticospinal tract (CST) and dorsal column (DC) axons in both monophasic (C57/BL6 mice) and chronic-relapsing (Biozzi mice) murine EAE. Untreated C57/BL6 mice exhibit a 40-50% loss of CST and DF axons at 90 and 180 days post-EAE induction via myelin-oligodendrocyte glycoprotein (MOG) injection. In contrast, only 4% of DF axons are lost at 90 days, and only 8% are lost at 180 days in phenytoin-treated C57/BL6 mice with EAE; only 21-29% of CST axons are lost at 90 and 180 days in phenytoin-treated C57/BL6 mice with EAE. Attenuation of dorsal column compound action potentials was ameliorated and clinical status was also significantly enhanced with phenytoin treatment at 90 and 180 days in this model. In addition, inflammatory cell infiltration into the dorsal columns was reduced in phenytoin-treated mice with EAE compared with untreated mice with EAE. Similar results were obtained in Biozzi mice with chronic-relapsing EAE followed for 120 days post-injection. These observations demonstrate that phenytoin provides long-term protection of CNS axons and improves clinical status in both monophasic and chronic-relapsing models of neuroinflammation.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"