Add like
Add dislike
Add to saved papers

Overexpression of TIMP-1 mediated by recombinant adenovirus in hepatocellular carcinoma cells inhibits proliferation and invasion in vitro.

BACKGROUND: Matrix metalloproteinases (MMPs) and its natural tissue inhibitors of metalloproteinases (TIMPs) are involved in cancer progression. This study was undertaken to determine the effects of overexpression of TIMP-1 on human hepatocellular carcinoma (HCC) cell growth, proliferation, and invasion.

METHODS: Employing the efficient AdEasy(TM) system, recombinant adenovirus AdTIMP-1 containing full-length cDNA of TIMP-1 was generated by homologous recombination and amplified in 293 cells. Then, human HCC cell line (HepG2) underwent gene transfection to overexpress TIMP-1 (so-called HepG-T cells). The mRNA and protein expressions of TIMP-1 were detected with RT-PCR and Western blotting, respectively. The ultrastructure was observed with a transmission electron microscope and the proliferation of HepG-T cells was determined by MTT assay and growth curve. The potential of in vitro invasion was measured with Millicell Chamber.

RESULTS: The resulting AdTIMP-1 and HepG-T cells were generated and the expression of TIMP-1 was detected in vitro. The cell proliferation curves and MTT assay showed HepG-T cells' growth, and proliferation were obviously inhibited. The invasion across Matrigel-coated filters was significantly decreased compared with controls. The suppression rate of HepG-2 cells with AdhTIMP-1 transfection was 50%, and AdhTIMP-1 transfection inhibited by more than 91.6% of the invasion into the Matrigel-coated filter (P<0.01).

CONCLUSIONS: TIMP-1 overexpression results in the suppression of proliferative and invasive potential of HepG2 cells in vitro. This study demonstrates the potential role of TIMP-1 as a target for liver cancer gene therapy and has laid a foundation for further study on its anticancer function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app