JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis.

Prostate 2006 November 2
BACKGROUND: The ARCaP cell line was established from the ascites fluid of a patient with metastatic prostate cancer. This study characterized the host microenvironmental role in cancer progression, epithelial to mesenchymal transition (EMT), and bone and adrenal metastasis in parental ARCaP and its derived cell subclones.

METHODS: Cytogenetic profiles, growth, migration, invasion, cellular interaction, drug sensitivities, and gene expression of ARCaP cell subclones were compared. In vivo gene expression, behavior, and metastasis of ARCaP subclones were analyzed by serial intracardiac injections into SCID mice.

RESULTS: ARCaP(E) cells, with cobblestone morphology, underwent EMT through cellular interaction with host bone and adrenal gland. Lineage-derived ARCaP(M) cells, with spindle-shape fibroblastic morphology, exhibited decreased cell adhesion and increased metastasis to bone and adrenal gland. Cytogenetic analyses of parental and ARCaP subclones confirmed their clonality.

CONCLUSIONS: ARCaP uniquely models the molecular basis of prostate cancer bone and adrenal metastases and epithelial to mesenchymal transition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app