Add like
Add dislike
Add to saved papers

Effect of circulatory congestion on the components of pulmonary diffusing capacity in morbid obesity.

Obesity 2006 July
OBJECTIVE: Obese patients without clinically apparent heart disease may have a high output state and elevated total and central blood volumes. Central circulatory congestion should result in elevated pulmonary diffusing capacity (DLCO) and capillary blood volume (Vc) reflecting pulmonary capillary recruitment; however, the effect on membrane diffusion (Dm) is uncertain. We examined DLCO and its partition into Vc and Dm in 13 severely obese subjects (BMI = 51 +/- 14 kg/m2) without manifest cardiopulmonary disease before and after surgically induced weight loss.

RESEARCH METHODS AND PROCEDURES: DLCO and its partition into Vc and Dm [referenced to alveolar volume (VA)] as described by Roughton and Forster, total body water by tritiated water, and fat distribution by waist-to-hip ratio were performed.

RESULTS: Despite normal DLCO (mean 98 +/- 16% predicted), Vc/VA was increased (mean 118 +/- 30% predicted), and Dm/VA was reduced (mean 77 +/- 34% predicted). Nine of 13 subjects were restudied after weight loss (mean 52 +/- 43 kg); Vc/VA decreased to 89 +/- 18% predicted (p = 0.01), and Dm/VA increased to 139 +/- 30% predicted (p < 0.01). Increasing total body water was associated with both increasing Vc (r = 0.74, p = 0.01) and increasing waist-to-hip ratio (r = 0.65, p = 0.02), indicating that circulatory congestion increases with increasing central obesity.

DISCUSSION: Severely obese subjects without manifest cardiopulmonary disease may have increased Vc indicating central circulatory congestion and reduced Dm suggesting associated alveolar capillary leak, despite normal DLCO. Reversibility with weight loss is in accord with reversibility of the hemodynamic abnormalities of obesity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app