Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nonlinear neurovascular coupling in rat sensory cortex by activation of transcallosal fibers.

Functional neuroimaging and normal brain function rely on the robust coupling between neural activity and cerebral blood flow (CBF), that is neurovascular coupling. We examined neurovascular coupling in rat sensory cortex in response to direct stimulation of transcallosal pathways, which allows examination of brain regions inaccessible to peripheral stimulation techniques. Using laser-Doppler flowmetry to record CBF and electrophysiologic recordings of local field potentials (LFPs), we show an exponential relation between CBF responses and summed LFP amplitudes. Hemodynamic responses were dependent on glutamate receptor activation. CNQX, an AMPA receptor blocker, strongly attenuated evoked CBF responses and LFP amplitudes at all stimulation frequencies. In comparison, N-methyl D-aspartate (NMDA) receptor blockade by MK801 attenuated CBF responses at high (>7 Hz) but not low (<7 Hz) stimulation frequencies, without affecting evoked LFP amplitudes. This shows the limitation of using LFP amplitudes as indicators of synaptic activity. 7-Nitroindazole, a neuronal nitric oxide synthase inhibitor, and indomethacin, a nonspecific cyclooxygenase inhibitor, attenuated the hemodynamic responses by 50%+/-1% and 48%+/-1%, respectively, without affecting LFP amplitudes. The data suggest that preserved activity of both AMPA and NMDA receptors is necessary for the full CBF response evoked by stimulation of rodent interhemispheric connections. AMPA receptor activation gives rise to a measurable LFP, but NMDA receptor activation does not. The lack of a measurable LFP from neural processes that contribute importantly to CBF may explain some of the difficulties in transforming extracellular current or voltage measurements to a hemodynamic response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app