Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Interferon-gamma dose-dependently inhibits prostaglandin E2-mediated dendritic-cell-migration towards secondary lymphoid organ chemokines.

Vaccine 2006 November 31
Monocyte-derived human dendritic cells (MoDCs) are increasingly applied as cellular vaccines for cancer patients. Important features for their efficacy include high migratory responsiveness to lymph node-chemokines and most likely their ability to produce bioactive IL-12 p70 upon subsequent contact with CD40 ligand-expressing T-cells. The current standard DC-maturation cocktail for clinical trials is inflammatory cytokines (TNF-alpha, IL-1beta and IL-6) combined with prostaglandin E(2) (PGE(2)), inducing phenotypically mature MoDCs with high migratory responsiveness to CCR7 ligands. This cocktail does not, however, induce or prime for production of IL-12 p70. Addition of IFN-gamma to PGE(2)-containing maturation cocktails has been shown to prime for substantial production of IL-12 p70 by subsequent CD40 ligation, but the impact of IFN-gamma on phenotypic maturation and migratory responsiveness induced by PGE(2)-containing inflammatory stimuli still remains elusive. Here, we demonstrate that addition of IFN-gamma to the standard maturation cocktail decreased CCR7 mRNA and down-regulated CCR7 expression on MoDCs in a dose-dependent manner. Moreover, addition of IFN-gamma was found to suppress MoDC-migration towards the CCR7-ligands CCL19 and CCL21. These novel findings indicate that addition of IFN-gamma to DC-maturation stimuli may have no beneficial impact on MoDC-vaccine efficiency and further implicate IFN-gamma as a negative feedback factor in DC migration towards draining lymph nodes when full-blown Th1-type responses are established. Such mechanism may restrict an uncontrolled and potentially harmful amplification of the adaptive Th1 response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app