Add like
Add dislike
Add to saved papers

Biosynthesis of malonylated flavonoid glycosides on the basis of malonyltransferase activity in the petals of Clitoria ternatea.

The crude malonyltransferase from the petals of Clitoria ternatea was characterized enzymatically to investigate its role on the biosynthetic pathways of anthocyanins and flavonol glycosides. In C. ternatea, a blue flower cultivars (DB) and mauve flower variety (WM) accumulate polyacylated anthocyanins (ternatins) and delphinidin 3-O-(6''-O-malonyl)-beta-glucoside which is one of the precursors of ternatins, respectively. Moreover, WM accumulates minor delphinidin glycosides - 3-O-beta-glucoside, 3-O-(2''-O-alpha-rhamnosyl)-beta-glucoside, 3-O-(2''-O-alpha-rhamnosyl-6''-O-malonyl)-beta-glucoside of delphinidin. These glycosidic patterns for minor anthocyanins in WM are also found among the minor flavonol glycosides in all the varieties including a white flower variety (WW) although the major flavonol glycosides are 3-O-(2''-O-alpha-rhamnosyl)-beta-glucoside, 3-O-(6''-O-alpha-rhamnosyl)-beta-glucoside, 3-O-(2'',6''-di-O-alpha-rhamnosyl)-beta-glucoside of kaempferol, quercetin, and myricetin. How do the enzymatic characteristics affect the variety of glycosidic patterns in the flavonoid glycoside biosynthesis among these varieties? While the enzyme from DB highly preferred delphinidin 3-O-beta-glucoside in the presence of malonyl-CoA, it also has a preference for other anthocyanidin 3-O-beta-glucosides. It could use flavonol 3-O-beta-glucosides in much lower specific activities than anthocyanins; however, it could not utilize 3-O-(2''-O-alpha-rhamnosyl)-beta-glucosides of anthocyanins and flavonols, and 3,3'-di- and 3,3',5'-tri-O-beta-glucoside of delphinidin - other possible precursors in ternatins biosynthesis. It highly preferred malonyl-CoA as an acyl donor in the presence of delphinidin 3-O-beta-glucoside. The crude enzymes prepared from WM and WW had the same enzymatic characteristics. These results suggested that 3-O-(2''-O-alpha-rhamnosyl-6''-O-malonyl)-beta-glucosides of flavonoids were synthesized via 3-O-(6''-O-malonyl)-beta-glucosides rather than via 3-O-(2''-O-alpha-rhamnosyl)-beta-glucosides, and that malonylation proceeded prior to glucosylation at the B-ring of delphinidin in the early biosynthetic steps towards ternatins. It seemed that the substrate specificities largely affected the difference in the accumulated amount of malonylated glycosides between anthocyanins and flavonols although they are not simply proportional to the accumulation ratio. This enzyme might join in the production of both malonylanthocyanins and flavonol malonylglycosides as a result of broad substrate specificities towards flavonoid 3-O-beta-glucosides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app