JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches.

The internal conductance to CO(2) transfer from intercellular spaces to chloroplasts poses a major limitation to photosynthesis, but few studies have investigated its temperature response. The aim of this study was to determine the temperature response of photosynthesis and internal conductance between 10 degrees C and 35 degrees C in seedlings of a deciduous forest tree species, Quercus canariensis. Internal conductance was estimated via simultaneous measurements of gas exchange and chlorophyll fluorescence ("variable J method"). Two of the required parameters, the intercellular photocompensation point (C(i)*) and rate of mitochondrial respiration in the light (R(d)), were estimated by the Laisk method. These were used to calculate the chloroplastic photocompensation point (Gamma*) in a simultaneous equation with g(i). An independent estimate of internal conductance was obtained by a novel curve-fitting method based on the curvature of the initial Rubisco-limited portion of an A/C(i) curve. The temperature responses of the rate of Rubisco carboxylation (V(cmax)) and the RuBP limited rate of electron transport (J(max)) were determined from chloroplastic CO(2) concentrations. The rate of net photosynthesis peaked at 24 degrees C. C(i)* was similar to reports for other species with a C(i)* of 39 micromol mol(-1) at 25 degrees C and an activation energy of 34 kJ mol(-1). Gamma* was very similar to the published temperature response for Spinacia oleracea from 20 degrees C to 35 degrees C, but was slightly greater at 10 degrees C and 15 degrees C. J(max) peaked at 30 degrees C, whereas V(cmax) did not reach a maximum between 10 degrees C and 35 degrees C. Activation energies were 49 kJ mol(-1) for V(cmax) and 100 kJ mol(-1) for J(max). Both methods showed that internal conductance doubled from 10 degrees C to 20 degrees C, and then was nearly temperature-independent from 20 degrees C to 35 degrees C. Hence, the temperature response of internal conductance could not be fitted to an Arrhenius function. The best fit to estimated g(i) was obtained with a three-parameter log normal function (R(2)=0.98), with a maximum g(i) of 0.19 mol m(-2) s(-1) at 29 degrees C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app