JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Antiproliferative activity of NQ304, a synthetic 1,4-naphthoquinone, is mediated via the suppressions of the PI3K/Akt and ERK1/2 signaling pathways in PDGF-BB-stimulated vascular smooth muscle cells.

Platelet derived growth factor (PDGF)-BB is one of the most potent vascular smooth muscle cell (VSMC) proliferative factors, and abnormal VSMC proliferation by PDGF-BB plays an important role in the development and progression of atherosclerosis. The aim of this study was to assess the effect of NQ304 [2-chloro-3-(4-hexylphenyl)-amino-1,4-naphthoquinone], a newly synthesized 1,4-naphthoquinone derivative, on the proliferation of PDGF-BB-stimulated rat aortic VSMCs. Antiproliferative effects of NQ304 on rat aortic VSMCs were examined by direct cell counting and by using [(3)H] thymidine incorporation assays. It was found that NQ304 potently the growth of VSMCs. Preincubation with NQ304 (1-10 microM) significantly inhibited proliferation and DNA synthesis of 50 ng/ml PDGF-BB-stimulated rat aortic VSMCs in a concentration-dependent manner. In addition, we investigated the mechanism of proliferation suppression by NQ304 in PDGF-BB-stimulated rat aortic VSMCs, and found that PDGF-BB-stimulated immediate-early gene expression (c-fos), activator protein (AP)-1 activation, extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation, and Akt kinase were significantly inhibited by NQ304. An examination of the suppressive effects of NQ304 on PDGF-BB-stimulated VSMC cycle progression showed that NQ304 (10 microM) induced the G1 phase arrest of PDGF-BB-stimulated cell cycle progression by elevating p21(cip1) mRNA expression. These findings suggest that the inhibitory effects of NQ304 on DNA synthesis, proliferation, and cell cycle progression on PDGF-BB-stimulated VSMCs are mediated via the downregulations of AP-1 activation and c-fos expression achieved in turn via the suppressions of the phosphatidylinositol 3-kinase (PI3K)/Akt and ERK1/2 signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app