Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects

Gautam K Bandyopadhyay, Joseph G Yu, Jachelle Ofrecio, Jerrold M Olefsky
Diabetes 2006, 55 (8): 2277-85
Increased accumulation of fatty acids and their derivatives can impair insulin-stimulated glucose disposal by skeletal muscle. To characterize the nature of the defects in lipid metabolism and to evaluate the effects of thiazolidinedione treatment, we analyzed the levels of triacylglycerol, long-chain fatty acyl-coA, malonyl-CoA, fatty acid oxidation, AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), malonyl-CoA decarboxylase, and fatty acid transport proteins in muscle biopsies from nondiabetic lean, obese, and type 2 subjects before and after an euglycemic-hyperinsulinemic clamp as well as pre-and post-3-month rosiglitazone treatment. We observed that low AMPK and high ACC activities resulted in elevation of malonyl-CoA levels and lower fatty acid oxidation rates. These conditions, along with the basal higher expression levels of fatty acid transporters, led accumulation of long-chain fatty acyl-coA and triacylglycerol in insulin-resistant muscle. During the insulin infusion, muscle fatty acid oxidation was reduced to a greater extent in the lean compared with the insulin-resistant subjects. In contrast, isolated muscle mitochondria from the type 2 subjects exhibited a greater rate of fatty acid oxidation compared with the lean group. All of these abnormalities in the type 2 diabetic group were reversed by rosiglitazone treatment. In conclusion, these studies have shown that elevated malonyl-CoA levels and decreased fatty acid oxidation are key abnormalities in insulin-resistant muscle, and, in type 2 diabetic patients, thiazolidinedione treatment can reverse these abnormalities.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"