Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects.

Diabetes 2006 August
Increased accumulation of fatty acids and their derivatives can impair insulin-stimulated glucose disposal by skeletal muscle. To characterize the nature of the defects in lipid metabolism and to evaluate the effects of thiazolidinedione treatment, we analyzed the levels of triacylglycerol, long-chain fatty acyl-coA, malonyl-CoA, fatty acid oxidation, AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), malonyl-CoA decarboxylase, and fatty acid transport proteins in muscle biopsies from nondiabetic lean, obese, and type 2 subjects before and after an euglycemic-hyperinsulinemic clamp as well as pre-and post-3-month rosiglitazone treatment. We observed that low AMPK and high ACC activities resulted in elevation of malonyl-CoA levels and lower fatty acid oxidation rates. These conditions, along with the basal higher expression levels of fatty acid transporters, led accumulation of long-chain fatty acyl-coA and triacylglycerol in insulin-resistant muscle. During the insulin infusion, muscle fatty acid oxidation was reduced to a greater extent in the lean compared with the insulin-resistant subjects. In contrast, isolated muscle mitochondria from the type 2 subjects exhibited a greater rate of fatty acid oxidation compared with the lean group. All of these abnormalities in the type 2 diabetic group were reversed by rosiglitazone treatment. In conclusion, these studies have shown that elevated malonyl-CoA levels and decreased fatty acid oxidation are key abnormalities in insulin-resistant muscle, and, in type 2 diabetic patients, thiazolidinedione treatment can reverse these abnormalities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app