JOURNAL ARTICLE
MULTICENTER STUDY
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Maternal testosterone levels during pregnancy are associated with offspring size at birth.

OBJECTIVE: Animal studies have indicated that maternal androgen levels influence the intrauterine environment and development of the offspring. Human data are missing. We therefore investigated the possible association between maternal androgens and offspring size at birth in humans.

DESIGN: A random sample of parous Caucasian women (n=147) was followed prospectively through pregnancy.

METHODS: Maternal serum levels of dehydroepiandrosterone sulfate (DHEAS), androstenedione, testosterone and sex hormone-binding globulin (SHBG) were measured at gestational weeks 17 and 33. The main outcome measures were weight and length at birth. Associations between maternal androgen levels and offspring birth weight and length were investigated using multiple linear regression modeling adjusted for potential confounding by maternal height, pre-pregnancy body mass index, smoking, parity, offspring gender and gestational age at birth.

RESULTS: Elevated maternal testosterone levels at week 17 and 33 were both associated with lower birth weights and lengths. Accordingly, at week 17, an increase in maternal testosterone levels from the 25th to the 75th percentile was associated with a decrease in birth weight by 160 g (95% confidence interval (CI); 29-290 g), while at week 33 that estimate was 115 g (95% CI; 21-207 g). No similar associations were observed for DHEAS, androstenedione or SHBG.

CONCLUSIONS: Elevated maternal testosterone levels during human pregnancy are associated with growth restriction in utero. Our results support animal studies, which have indicated that maternal androgen levels influence intrauterine offspring environment and development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app