JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Percutaneous mitral annuloplasty: an anatomic study of human coronary sinus and its relation with mitral valve annulus and coronary arteries.

Circulation 2006 August 2
BACKGROUND: To allow performance of "stand-alone" mitral annuloplasty with minimal invasiveness, percutaneous techniques consisting of delivery into the coronary sinus (CS) of devices intended to shrink the mitral valve annulus have recently been tested in animal models. These techniques exploit the anatomic proximity of the CS and mitral valve annulus in ovine or dogs. Knowledge of a detailed anatomic relationship between the CS, coronary arteries, and mitral valve annulus in humans is essential to define the safety and efficacy of percutaneous techniques in clinical practice. We sought to determine the qualitative and quantitative anatomic relationships between CS and surrounding structures in human hearts.

METHODS AND RESULTS: The distance from the CS to the mitral valve annulus and the relationship between the CS and surrounding structures were studied in 61 excised cadaveric human hearts. Maximal distance from the CS to the mitral valve annulus was found to be up to 19 mm (mean, 9.7+/-3.2 mm). A diagonal or ramus branch, main circumflex artery, or its branches were located between anterior interventricular vein/CS and the mitral valve annulus in 16.4% and 63.9% of cases, respectively.

CONCLUSIONS: Surgical anatomy suggests that in humans the CS is located behind the left atrial wall at a significant distance from the mitral valve annulus. Percutaneous mitral annuloplasty devices probably shrink the mitral valve annulus only by an indirect traction mediated by the left atrial wall; a theoretical risk of compressing coronary artery branches exists. Chronic studies are needed to address this problem and to determine long-term efficacy of such methods.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app