Add like
Add dislike
Add to saved papers

Removal of inhibitory phenolic compounds by biological activated carbon coupled membrane bioreactor.

Phenolic compounds cause problems for conventional treatments due to their toxic and inhibitory properties. This work investigated the treatability of phenolic compounds by using two membrane-bioreactor systems, namely: activated sludge coupled with MBR (AS-MBR) and biological granular activated carbon coupled with MBR (BAC-MBR). Initially, the system was fed with phenol (500 mg/L) followed by adding 2,4-dichlorophenol (2,4-DCP). Phenol, 2,4-DCP, TOC and COD removal were higher than 98.99% when the organic load ranged between 1.80 and 5.76 kg/m3.d COD. In addition to MBR system development, removal mechanisms were also investigated. Relatively low values of phenol adsorption of GAC and biomass, and high maximum substrate removal rates obtained from a biokinetic experiment, proved that the removals were mainly due to biodegradation. Analysis of sludge indicated a significant difference in the sludge characteristics of the two reactors. The high EPS content in BAC-MBR led to higher viscosity and poor sludge settling properties. The relationship between sludge properties and EPS components revealed that settleability had no direct correlation with EPS, though it was better correlated to protein/carbohydrate ratios.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app