JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Anti-HER2 antibody trastuzumab inhibits CDK2-mediated NPAT and histone H4 expression via the PI3K pathway.

Cell Cycle 2006 August
The anti-HER2 antibody trastuzumab (Herceptin) has been used to treat patients with breast cancers that overexpress HER2. We have demonstrated that p27(Kip1) upregulation is one of the key events that cause G(1) arrest upon trastuzumab treatment. Here, we have examined the effect of trastuzumab on expression of CDK2, Rb, E2F, NPAT and histone H4 in breast cancer cells that overexpress HER2. Trastuzumab treatment dramatically inhibited the kinase activity and expression of CDK2, whereas the kinase activity and expression of CDK4 were not affected. Unlike the p27(Kip1) upregulation that occurs primarily through post-translational mechanisms, CDK2 was downregulated primarily at a transcriptional level as shown by Northern blotting and real-time RT-PCR analyses. With a decrease in CDK2 activity, trastuzumab decreased the kinase activity of cyclin E but had little effect on cyclin E protein level. Overexpression of wild-type cyclin E or its lower molecular weight forms did not influence the response to trastuzumab. Levels and activities of CDK6, cyclin A, and cyclin D1 were all suppressed by trastuzumab. As a result, trastuzumab inhibited Rb phosphorylation that associates with CDK2, cyclin E, CDK6, cyclin A, or cyclin D1. As predicted from these changes, trastuzumab decreased the DNA-binding activity of E2F, decreased the level of NPAT protein, and decreased the level of histone H4 mRNA. Blockade of the PI3K pathway with LY294002 produced similar effects to trastuzumab treatment on expression of each of these genes. Taken together, treatment of breast cancer cells that overexpress HER2 with the anti-HER2 antibody trastuzumab inhibits CDK2, Rb phosphorylation, E2F activity, NPAT, and histone H4 via PI3K signaling that are needed for both DNA and histone synthesis during progression from G(1) phase to S phase of the cell cycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app