Add like
Add dislike
Add to saved papers

Electronic and molecular surface structure of Ru(tcterpy)(NCS)3 and Ru(dcbpy)2(NCS)2 adsorbed from solution onto nanostructured TiO2: a photoelectron spectroscopy study.

The element specificity of photoelectron spectroscopy (PES) has been used to compare the electronic and molecular structure of the dyes Ru(tcterpy)(NCS)3 (BD) and Ru(dcbpy)2(NCS)2 adsorbed from solution onto nanostructured TiO2. Ru(dcbpy)2(NCS)2 was investigated in its acid (N3) and in its 2-fold deprotonated form (N719) having tetrabutylammonium (TBA+) as counterions. A comparison of the O1s spectra for the dyes indicates that the interactions through the carboxylate groups with the TiO2 surface are very similar for the dyes. However, we observe that some of the dye molecules also interact through the NCS groups when adsorbed at the TiO2 surface. Comparing the N719 and the N3 molecule, the fraction of NCS groups interacting through the sulfur atoms is smaller for N719 than for N3. We also note that the counterion TBA+ is coadsorbed with the N719 and BD molecules although the amount was smaller than expected from the molecular formulas. Comparing the valence levels for the dyes adsorbed on TiO2, the position of the highest occupied electronic energy level is similar for N3 and N719, while that for BD is lower by 0.25 eV relative to that of the other complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app