Add like
Add dislike
Add to saved papers

Lithium ion effect on electron injection from a photoexcited coumarin derivative into a TiO2 nanocrystalline film investigated by visible-to-IR ultrafast spectroscopy.

The dynamics of ultrafast electron injection from a coumarin derivative (NKX-2311), which is an efficient photosensitizer for dye-sensitized solar cells, into the conduction band of TiO(2) nanocrystalline films have been investigated by means of femtosecond transient absorption spectroscopy in a wide wavelength range from 600 nm to 10 mum. In the absence of Li(+) ions, electron injection into the TiO(2) conduction band occurred in about 300 fs. In the presence of Li(+) ions, however, electron injection occurred within approximately 100 fs, and the oxidized dye generated was found to interact with nearby Li(+) ions. Possible positions of Li(+) ion attachment to the dye molecule were examined by means of semiempirical molecular orbital calculations. The electron injection efficiency was found to increase by a factor of 1.37 in the presence of Li(+) ions. The effects of Li(+) ions on the energy of the TiO(2) conduction band and the electronic interaction between the dye molecule and Li(+) ions are discussed, and the major cause for the acceleration of electron injection was suggested to be a conduction-band shift of TiO(2).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app