Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

On the structure and desorption dynamics of DNA bases adsorbed on gold: a temperature-programmed study.

The structure and desorption dynamics of mono- and multilayer samples of adenine, cytosine, guanine, and thymine on polycrystalline gold thin films are studied using temperature-programmed desorption-infrared reflection absorption spectroscopy (TPD-IRAS) and temperature-programmed desorption-mass spectroscopy (TPD-MS). It is shown that the pyrimidines, adenine and guanine, adsorb to gold in a complex manner and that both adhesive (adenine) and cohesive (guanine) interactions contribute the apparent binding energies to the substrate surface. Adenine displays at least two adsorption sites, including a high-energy site (210 degrees C, approximately 136 kJ/mol), wherein the molecule coordinates to the gold substrate via the NH2 group in an sp3-like, strongly perturbed, nonplanar configuration. The purines, cytosine and thymine, display a less complicated adsorption/desorption behavior. The desorption energy for cytosine (160 degrees C, approximately 122 kJ/mol) is similar to those obtained for adenine and guanine, but desorption occurs from a single site of dispersed, nonaggregated cytosine. Thymine desorbs also from a single site but at a significantly lower energy (100 degrees C, approximately 104 kJ/mol). Infrared data reveal that the monolayer architectures discussed herein are structurally very different from those observed for the bases in the bulk crystalline state. It is also evident that both pyrimidines and purines adsorb on gold with the plane of the molecule in a nonparallel orientation with respect to the substrate surface. The results of this work are discussed in the context of improving the understanding of the design of capturing oligonucleotides or DNA strands for bioanalytical applications, in particular, for gold nanoparticle-based assays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app