Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Marked variations of dissociation energy and H-bond character of the guanine-cytosine base pair induced by one-electron oxidation and Li+ cation coupling.

The variation of dissociation energy and H-bond character of the G-C cation and the Li-GC cation have been investigated by employing density functional theory (B3LYP) with the 6-31+G* basis set. The one-electron oxidation and the coupling of Li(+) to the guanine-cytosine base pair can strengthen the interaction between guanine and cytosine. The interaction of the cation Li(+) with guanine is attractive and is attributed to the polarization of the H-bonds between G-C that enhances G-C interaction. The cooperativity of the three H-bonds in the GC and Li-GC cations is different from that in the neutral GC base pair. The proton-transfer process between N(1) of the guanine and N(3) of the cytosine can occur in the GC cation and the Li-GC cation. The geometries of the transition state are out of plane, especially for the transition state of the Li-GC cation. The analysis of the activation energy for the proton-transfer process shows that the GC(+) before and after proton transfer can exist simultaneously in the gas phase, but for the Li-GC(+) system, the Li-GC(+) without proton transfer is the dominating species in the gas phase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app