Journal Article
Review
Add like
Add dislike
Add to saved papers

NOTCH signaling as a novel cancer therapeutic target.

NOTCH-ligand interaction is a highly conserved mechanism that regulates specific cell fate decision during development. In addition to its functions in developmental and cell maturation processes, studies indicate that NOTCH activation plays a role in the onset and progression of many human malignancies. The prevailing new strategy for rationally targeted cancer treatment is aimed at the development of target-selective "smart" drugs on the basis of characterized mechanisms of action. The connection between NOTCH signaling and tumorigenesis suggests that NOTCH may be such a target candidate. Gamma-secretase is a large membrane-integral multisubunit protease complex, which is essential for NOTCH receptor activation. Inhibitors of this enzyme are being developed for Alzheimer's disease, due to its role in cleaving beta-amyloid precursor in the brain. Recently, Gamma-secretase inhibitors (GSIs), as well as various biopharmaceutical or genetic NOTCH signaling inhibitors have been suggested as potential novel cancer therapeutic strategies. This review summarizes the evidence linking NOTCH signaling to several types of cancer, as well as the possible therapeutic indications of NOTCH inhibitors and the challenges facing their clinical development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app