COMPARATIVE STUDY
JOURNAL ARTICLE

How can the response to volume expansion in patients with spontaneous respiratory movements be predicted?

Sarah Heenen, Daniel De Backer, Jean-Louis Vincent
Critical Care: the Official Journal of the Critical Care Forum 2006, 10 (4): R102
16846530

INTRODUCTION: The aim of the study was to evaluate the ability of different static and dynamic measurements of preload to predict fluid responsiveness in patients with spontaneous respiratory movements.

METHODS: The subjects were 21 critically ill patients with spontaneous breathing movements receiving mechanical ventilation with pressure support mode (n = 9) or breathing through a face mask (n = 12), and who required a fluid challenge. Complete hemodynamic measurements, including pulmonary artery occluded pressure (PAOP), right atrial pressure (RAP), pulse pressure variation (DeltaPP) and inspiratory variation in RAP were obtained before and after fluid challenge. Fluid challenge consisted of boluses of either crystalloid or colloid until cardiac output reached a plateau. Receiver operating characteristics (ROC) curve analysis was used to evaluate the predictive value of the indices to the response to fluids, as defined by an increase in cardiac index of 15% or more.

RESULTS: Cardiac index increased from 3.0 (2.3 to 3.5) to 3.5 (3.0 to 3.9) l minute-1 m-2 (medians and 25th and 75th centiles), p < 0.05. At baseline, DeltaPP varied between 0% and 49%. There were no significant differences in DeltaPP, PAOP, RAP and inspiratory variation in RAP between fluid responders and non-responders. Fluid responsiveness was predicted better with static indices (ROC curve area +/- SD: 0.73 +/- 0.13 for PAOP, p < 0.05 vs DeltaPP and 0.69 +/- 0.12 for RAP, p = 0.054 compared with DeltaPP) than with dynamic indices of preload (0.40 +/- 0.13 for DeltaPP and 0.53 +/- 0.13 for inspiratory changes in RAP, p not significant compared with DeltaPP).

CONCLUSION: In patients with spontaneous respiratory movements, DeltaPP and inspiratory changes in RAP failed to predict the response to volume expansion.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16846530
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"