Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Non-specific binding of [18F]FDG to calcifications in atherosclerotic plaques: experimental study of mouse and human arteries.

PURPOSE: [(18)F]FDG has been used as an inflammation marker and shown to accumulate in inflammatory atherosclerotic plaques. The aim of this study was to investigate the uptake and location of [(18)F]FDG in atherosclerotic plaque compartments.

METHODS: The biodistribution of intravenously administered [(18)F]FDG was analysed in atherosclerotic LDLR/ApoB48 mice (n=11) and control mice (n=9). Digital autoradiography was used to detect the ex vivo distribution in frozen aortic sections. In vitro binding of [(18)F]FDG in human atherosclerotic arteries was also examined.

RESULTS: The uptake of [(18)F]FDG was significantly higher in the aorta of atherosclerotic mice as compared with the control mice. Autoradiography of excised arteries showed higher [(18)F]FDG uptake in the plaques than in the healthy vessel wall (mean ratio +/-SD 2.7+/-1.1). The uptake of [(18)F]FDG in the necrotic, calcified sites of the advanced atherosclerotic lesions was 6.2+/-3.2 times higher than that in the healthy vessel wall. The in vitro studies of human arterial sections showed marked binding of [(18)F]FDG to the calcifications but not to other structures of the artery wall.

CONCLUSION: In agreement with previous studies, we observed [(18)F]FDG uptake in atherosclerotic plaques. However, prominent non-specific binding to calcified structures was found. This finding warrants further studies to clarify the significance of this non-specific binding in human plaques in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app