Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Formation of soluble oligomers and amyloid fibrils with physical properties of the scrapie isoform of the prion protein from the C-terminal domain of recombinant murine prion protein mPrP-(121-231).

Prion diseases are fatal neurodegenerative disorders associated with conformational conversion of the cellular prion protein, PrP(C), into a misfolded, protease-resistant form, PrP(Sc). Here we show, for the first time, the oligomerization and fibrillization of the C-terminal domain of murine PrP, mPrP-(121-231), which lacks the entire unstructured N-terminal domain of the protein. In particular, the construct we used lacks amino acid residues 106-120 from the so-called amyloidogenic core of PrP (residues 106-126). Amyloid formation was accompanied by acquisition of resistance to proteinase K digestion. Aggregation of mPrP-(121-231) was investigated using a combination of biophysical and biochemical techniques at pH 4.0, 5.5, and 7.0 and at 37 and 65 degrees C. Under partially denaturing conditions (65 degrees C), aggregates of different morphologies ranging from soluble oligomers to mature amyloid fibrils of mPrP-(121-231) were formed. Transmission electron microscopy analysis showed that roughly spherical aggregates were readily formed when the protein was incubated at pH 5.5 and 65 degrees C for 1 h, whereas prolonged incubation led to the formation of mature amyloid fibrils. Samples incubated at 65 degrees C at pH 4.0 or 7.0 presented an initial mixture of oligomers and protofibrils or fibrils. Electrophoretic analysis of samples incubated at 65 degrees C revealed formation of sodium dodecyl sulfate-resistant oligomers (dimers, trimers, and tetramers) and higher molecular weight aggregates of mPrP-(121-231). These results demonstrate that formation of an amyloid form with physical properties of PrP(Sc) can be achieved in the absence of the flexible N-terminal domain and, in particular, of residues 106-120 of PrP and does not require other cellular factors or a PrP(Sc) template.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app