Add like
Add dislike
Add to saved papers

Insoluble matrix components of glioma cells suppress LPS-mediated iNOS/NO induction in microglia.

This study examines the influence of insoluble matrix components of glioma (astrocytoma) cells on LPS-mediated inducible nitric oxide (NO)/NO synthase (iNOS) induction in microglia cells. Insoluble matrix components prepared from C6 rat glioma cells strongly suppressed iNOS induction and subsequent NO release induced by LPS. Matrices prepared from several glioma cell lines displayed similar inhibitory effects on LPS-induced NO/iNOS induction, whereas matrices from primary cultured rat astrocytes had a minimal influence. Of the various purified ECM materials examined, collagen suppressed LPS-mediated iNOS/NO induction in microglia. C6 matrices potentiated LPS-induced NF-kappaB DNA binding/transcriptional activity, suggesting that the suppression of LPS-induced iNOS by C6 matrices is NF-kappaB independent. C6 matrices inhibited LPS-mediated activation of p38 and JNK MAP kinases. This study shows that non-diffusible factors derived from astrocytoma cells in the brain are critically involved in the suppression of microglial cell activation. Our results indicate that activation of microglia can be regulated by various cellular and pathological environmental conditions, not only through cell-cell contact or soluble factors, but also via insoluble matrix components.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app