JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Quantitative determination of rosuvastatin in human plasma by liquid chromatography with electrospray ionization tandem mass spectrometry.

A simple and sensitive liquid chromatography/tandem mass spectrometry method was developed and validated for determining rosuvastatin in human plasma, a new synthetic hydroxymethylglutaryl-coenzyme A reductase inhibitor. The analyte and internal standard (IS; cilostazol) were extracted by simple one-step liquid/liquid extraction with ether. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The chromatographic separation was performed on an Atlantis C18 column (2.1 mm x 150 mm, 5.0 microm) with a mobile phase consisting of 0.2% formic acid/methanol (30:70, v/v) at a flow rate of 0.20 mL/min. The analyses were carried out by multiple reaction monitoring (MRM) using the precursor-to-product combinations of m/z 482 --> 258 and m/z 370 --> 288. The areas of peaks from the analyte and the IS were used for quantification of rosuvastatin. The method was validated according to the FDA guidelines on bioanalytical method validation. Validation results indicated that the lower limit of quantification (LLOQ) was 0.2 ng/mL and the assay exhibited a linear range of 0.2-50.0 ng/mL and gave a correlation coefficient (r) of 0.9991 or better. Quality control samples (0.4, 8, 25 and 40 ng/mL) in six replicates from three different runs of analysis demonstrated an intra-assay precision (RSD) 7.97-15.94%, an inter-assay precision 3.19-15.27%, and an overall accuracy (relative error) of < 3.7%. The method can be applied to pharmacokinetic or bioequivalence studies of rosuvastatin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app